Great Deal! Get Instant $10 FREE in Account on First Order + 10% Cashback on Every Order Order Now

SIT718 Real world Analytics Assignment Total Marks = 100, Weighting - 30% Due date: 3 May 2018 by 11.30 PM Assignment (pdf or MS word doc and appropriate programme files with your codes) must be...

1 answer below »
SIT718 Real world Analytics Assignment Total Marks = 100, Weighting - 30% Due date: 3 May 2018 by 11.30 PM Assignment (pdf or MS word doc and appropriate programme files with your codes) must be submitted via CloudDeakin’s Assignment Dropbox. You can sub- mit an electronic version of your assignment (photos of written document are not accepted). No hard copy or email submissions are accepted.You should label all figures and tables. This assignment assesses : ULO1: Apply the concepts of multivariate functions to summarise datasets. ULO2: Analyse datasets by interpreting model and function parameters of impor- tant families of multivariate functions. ULO3: Transform a real-life problem into a mathematical model. ULO4: Apply linear programming concepts to make optimal decisions. ULO6: Obtain optimal solutions for quantities that are either continuous or dis- crete. This assignment consists of two parts: Part A and Part B. Each part is allocated 50 marks and contributes with 15% to the final mark. 1 SIT718 Assignment 2018 – T1 2 of 7 Part A: Analysis of Energy Efficiency Dataset for Buildings Description: In order to design energy efficient buildings, the computation of the Heating Load (HL) and the Cooling Load (CL) is required to determine the specifications of the heating and cooling equipment needed to maintain comfortable indoor air conditions. Energy simulation tools are widely used to analyse or forecast building energy consumption. The Dataset provides energy analysis of Heating Load (denoted as Y1) and the Cooling Load (denoted as Y2) using 768 building shapes that are simulated using a building simulator. Select one of Y1 or Y2 as your variable of interest and focus the analysis on this variable. The dataset comprises 5 features (variables), which are denoted as X1, X2, X3,X4,X5. The description of the variables is given below: X1: Relative compactness in percentage (expressed in decimals) - A measure of building compactness. A high value means highly compact. X2: Surface area in square metres X3: Wall area in square metres X4: Roof area in square metres X5: Overall height in metres Y1: Heating load in kWh.m−2 per annum Y2: Cooling load in kWh.m−2 per annum Tasks: 1. Understand the data [10 marks] (i) Download the txt file (ENB18data.txt) from CloudDeakin and save it to your R work- ing directory. (ii) Assign the data to a matrix, e.g. using the.data <- as.matrix(read.table("ENB18data.txt")) (iii) Decide whether you would like to investigate Heating Load (Y1) or Cooling Load (Y2). This is your variable of interest. Generate a subset of 300 data, e.g. using: To investigate Heating Load Y1: my.data <- the.data[sample(1:768,300),c(1:5,6)] To investigate Cooling Load Y2: SIT718 Assignment 2018 – T1 3 of 7 my.data <- the.data[sample(1:768,300),c(1:5,7)] (iv) Using scatterplots and histograms, report on the general relationship between each of the variables X1,X2, X3, X4 and X5 and your variable of interest Y1 (heating load) or Y2 (cooling load). Include a scatter plot for each of the variables X1, X2, X3, X4, X5 and your variable of interest Y1 or Y2. Include a histogram for X1,X2,...,X5, and Y1 or Y2. Include 1 or 2 sentences about the relationships and distributions. 2. Transform the data [15 marks] (i) Choose any four from the first five variables X1,X2,X3,X4,X5. Make appropriate transformations to the variables (including Y1 or Y2) so that the val- ues can be aggregated in order to predict the variable of interest (your selected Heating Load Y1, or cooling load Y2). The transformations should reflect the general relationship between each of the four variables and the variable of interest. Assign your transformed data along with your transformed variable of interest to an array (it should be 300 rows and 5 columns). Save it to a txt file titled ”name-transformed.txt” using write.table(your.data,"name-transformed.txt",) (ii) Briefly explain each transformation for your selected variables and the variable of interest Y1 or Y XXXXXXXXXXsentences each). 3. Build models and investigate the importance of each variable. [15 marks] (i) Download the AggWaFit.R file (from CloudDeakin) to your working directory and load into the R workspace using, source("AggWaFit718.R") (ii) Use the fitting functions to learn the parameters for • Weighted arithmetic mean (WAM), • Weighted power means (PM) with p = 0.5, and p = 2, • Ordered weighted averaging function (OWA), and • Choquet integral. (iii) Include two tables in your report - one with the error measures (RMSE, Av.abs error, Pearson correlation, Spearman correlation) and one summarising the weights/parameters that were learned for your data. SIT718 Assignment 2018 – T1 4 of 7 (iv) Compare and interpret the data in your tables. Be sure to comment on: (a) How good the model is, (b) The importance of each of the variables (the four variables that you have selected), (c) Any interaction between any of those variables (are they complementary or redun- dant?) (d) better models favour higher or lower inputs (1-2 paragraphs for part (iv)). 4. Use your model for prediction. [10 marks] (i) Using your best fitting model, predict the Heating Load Y1 or the Cooling Load Y2 for the following input: X1=0.82, X2=612.5, X3=318.5, X4=147, X5=7. Give your result and comment on whether you think it is reasonable. (1-2 sentences) (ii) Comment generally on the ideal conditions (in terms of your 4 variables) under which a low heating or cooling load will occur. (1-2 sentences) For this part, your submission should include: 1. A report (created in any word processor), covering all of the items in above. With plots and tables it should only be 2 - 3 pages. 2. A data file named “name-transformed.txt” (where ‘name’ is replaced with your name - you can use your surname or first name - just to help us distinguish them!). 3. R code file, (that you have written to produce your results) named ”name-code.R”, where name is your name; SIT718 Assignment 2018 – T1 5 of 7 Part B: Optimisation 1. A food factory is making a special Juice for a customer from mixing two different existing products JA and JB. The compositions of JA and JB and prices ($/l) are given as follows, Amount (l) in /100 l of JA and JB Carrot Orange Apple Cost ($/l) JA XXXXXXXXXX JB XXXXXXXXXX The customer requires that there must be at least 3.5 litres Orange and at least 4 litres of Apple concentrate per 100 litres of the Juice respectively, but no more than 6 litres of Carrot concentrate per 100 litres of Juice. The customer needs at least 50 litres of Juice per week. a) Formulate a Linear Programming (LP) model for the factory that minimises the total cost of producing the Juice while satisfying all constraints. b) Use the graphical method to find the optimal solution. Show the feasible region and the optimal solution on the graph. Annotate all lines on your graph. What is the mini- mal cost for the product? [25 marks] SIT718 Assignment 2018 – T1 6 of 7 2. A factory makes three products (fabrics): Summer, Autumn, and Winter from three materials containing: Cotton, Wool and Viscose. The following table provides details on the sales price, production cost and purchase cost per ton of products and materials respectively. Sales price Production cost Purchase price Summer $50 $4 Cotton $30 Autumn $55 $4 Wool $45 Winter $60 $5 Viscose $40 The maximal demand (in tons) for each product, the minimum cotton and wool propor- tion in each product is as follows. Demand min Cotton proportion min Wool proportion Summer XXXXXXXXXX% 30% Autumn XXXXXXXXXX % 30% Winter XXXXXXXXXX% 50% Formulate a LP model for the factory that maximises the profit, while satisfying the demand and the cotton and wool proportion constraints. Solve the model using IBM ILOG CPLEX. What are the optimal profit and optimal values of the decision variables? Hints: 1. Let xij ≥ 0 be a decision variable that denotes the number of tons of products j for j ∈ {1 = Summer, 2 = Autumn, 3 = Winter} to be produced from Materials i ∈ {C=Cotton, W=Wool, V=Viscose}. 2. The proportion of a particular type of Material in a particular type of Product can be calculated as: e.g., the proportion of Cotton in product Summer is given by: xC,1 xC,1 + xW,1 + xV,1 . [25 marks] Submission Submit to the SIT718 Clouddeakin Dropbox. Combine the report from part A and the Solutions from part B in ONE pdf file. Copy and paste your CLEX code to Solutions for Part B. Label the file with name.pdf, where ‘name’ is replaced with your name - you can use your surname or first name - to help distinguish them!). Your final submission should consist of no more than 4 files: SIT718 Assignment 2018 – T1 7 of 7 1. One pdf file (created in any word processor), containing the report of Part A, the Solutions of the two questions of Part B, including CPLEX code, labelled with your name. This file should be no more than 5-6 pages.; 2. A data file named “name-transformed.txt” (where ‘name’ is replaced with your name; 3. A code with your R file, labelled with your name.R; 4. A code with your CPLEX file, labelled with your name.mod, also copy the code in your solution document. XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX
Answered Same Day May 01, 2020 SIT718

Solution

Abr Writing answered on May 03 2020
138 Votes
name-transformed.txt
"V1" "V2" "V3" "V4" "V6"
"1" 0.98 514.5 294 110.25 24.11
"2" 0.74 686 245 220.5 11.69
"3" 0.69 735 294 220.5 11.1
"4" 0.66 759.5 318.5 220.5 13.18
"5" 0.86 588 294 147 28.31
"6" 0.74 686 245 220.5 12.5
"7" 0.98 514.5 294 110.25 32.82
"8" 0.69 735 294 220.5 14.42
"9" 0.62 808.5 367.5 220.5 8.45
"10" 0.74 686 245 220.5 14.5
"11" 0.76 661.5 416.5 122.5 32.21
"12" 0.71 710.5 269.5 220.5 14.7
"13" 0.71 710.5 269.5 220.5 10.67
"14" 0.82 612.5 318.5 147 22.89
"15" 0.79 637 343 147 42.11
"16" 0.69 735 294 220.5 11.11
"17" 0.86 588 294 147 32.06
"18" 0.69 735 294 220.5 12.18
"19" 0.82 612.5 318.5 147 29.53
"20" 0.9 563.5 318.5 122.5 33.48
"21" 0.82 612.5 318.5 147 23.84
"22" 0.86 588 294 147 32.38
"23" 0.9 563.5 318.5 122.5 29.68
"24" 0.79 637 343 147 35.48
"25" 0.76 661.5 416.5 122.5 39.32
"26" 0.69 735 294 220.5 11.11
"27" 0.69 735 294 220.5 11.16
"28" 0.64 784 343 220.5 16.69
"29" 0.71 710.5 269.5 220.5 14.6
"30" 0.71 710.5 269.5 220.5 12.49
"31" 0.62 808.5 367.5 220.5 14.6
"32" 0.66 759.5 318.5 220.5 14.96
"33" 0.62 808.5 367.5 220.5 16.55
"34" 0.79 637 343 147 36.03
"35" 0.69 735 294 220.5 14.7
"36" 0.76 661.5 416.5 122.5 40.71
"37" 0.74 686 245 220.5 14.32
"38" 0.66 759.5 318.5 220.5 11.69
"39" 0.79 637 343 147 40
"40" 0.79 637 343 147 28.52
"41" 0.71 710.5 269.5 220.5 12.41
"42" 0.69 735 294 220.5 11.32
"43" 0.62 808.5 367.5 220.5 13
"44" 0.79 637 343 147 38.98
"45" 0.71 710.5 269.5 220.5 12.19
"46" 0.86 588 294 147 29.4
"47" 0.66 759.5 318.5 220.5 12.84
"48" 0.79 637 343 147 42.49
"49" 0.9 563.5 318.5 122.5 29.02
"50" 0.69 735 294 220.5 14.56
"51" 0.79 637 343 147 36.7
"52" 0.79 637 343 147 39.89
"53" 0.82 612.5 318.5 147 24.37
"54" 0.98 514.5 294 110.25 24.25
"55" 0.64 784 343 220.5 18.19
"56" 0.71 710.5 269.5 220.5 12.36
"57" 0.64 784 343 220.5 16.66
"58" 0.86 588 294 147 26.37
"59" 0.86 588 294 147 32.09
"60" 0.76 661.5 416.5 122.5 32.46
"61" 0.9 563.5 318.5 122.5 28.03
"62" 0.86 588 294 147 26.33
"63" 0.64 784 343 220.5 15.42
"64" 0.71 710.5 269.5 220.5 14.7
"65" 0.9 563.5 318.5 122.5 29.05
"66" 0.64 784 343 220.5 15.34
"67" 0.76 661.5 416.5 122.5 40.6
"68" 0.9 563.5 318.5 122.5 34.24
"69" 0.71 710.5 269.5 220.5 12.57
"70" 0.82 612.5 318.5 147 27.27
"71" 0.79 637 343 147 35.78
"72" 0.66 759.5 318.5 220.5 15.29
"73" 0.82 612.5 318.5 147 17.41
"74" 0.71 710.5 269.5 220.5 12.49
"75" 0.66 759.5 318.5 220.5 12.93
"76" 0.69 735 294 220.5 11.14
"77" 0.98 514.5 294 110.25 28.15
"78" 0.86 588 294 147 18.31
"79" 0.66 759.5 318.5 220.5 15.09
"80" 0.66 759.5 318.5 220.5 11.44
"81" 0.76 661.5 416.5 122.5 33.27
"82" 0.79 637 343 147 42.5
"83" 0.79 637 343 147 39.83
"84" 0.86 588 294 147 31.89
"85" 0.74 686 245 220.5 10.37
"86" 0.9 563.5 318.5 122.5 35.73
"87" 0.62 808.5 367.5 220.5 15.16
"88" 0.9 563.5 318.5 122.5 36.45
"89" 0.71 710.5 269.5 220.5 6.37
"90" 0.82 612.5 318.5 147 28.05
"91" 0.82 612.5 318.5 147 28.91
"92" 0.79 637 343 147 35.89
"93" 0.76 661.5 416.5 122.5 36.81
"94" 0.86 588 294 147 19.5
"95" 0.62 808.5 367.5 220.5 16.76
"96" 0.86 588 294 147 32.39
"97" 0.9 563.5 318.5 122.5 33.27
"98" 0.82 612.5 318.5 147 29.52
"99" 0.86 588 294 147 28.4
"100" 0.64 784 343 220.5 18.88
"101" 0.71 710.5 269.5 220.5 10.66
"102" 0.64 784 343 220.5 18.9
"103" 0.69 735 294 220.5 12.73
"104" 0.9 563.5 318.5 122.5 32.46
"105" 0.71 710.5 269.5 220.5 10.77
"106" 0.98 514.5 294 110.25 32.67
"107" 0.74 686 245 220.5 12.32
"108" 0.98 514.5 294 110.25 28.63
"109" 0.9 563.5 318.5 122.5 32.33
"110" 0.86 588 294 147 31.81
"111" 0.64 784 343 220.5 15.16
"112" 0.79 637 343 147 39.04
"113" 0.98 514.5 294 110.25 24.38
"114" 0.62 808.5 367.5 220.5 16.94
"115" 0.82 612.5 318.5 147 29.92
"116" 0.82 612.5 318.5 147 29.67
"117" 0.71 710.5 269.5 220.5 12.27
"118" 0.98 514.5 294 110.25 32.73
"119" 0.74 686 245 220.5 6.07
"120" 0.69 735 294 220.5 12.31
"121" 0.69 735 294 220.5 14.71
"122" 0.66 759.5 318.5 220.5 11.22
"123" 0.76 661.5 416.5 122.5 39.86
"124" 0.64 784 343 220.5 17.35
"125" 0.82 612.5 318.5 147 25.7
"126" 0.66 759.5 318.5 220.5 14.9
"127" 0.66 759.5 318.5 220.5 7.18
"128" 0.71 710.5 269.5 220.5 6.37
"129" 0.98 514.5 294 110.25 28.15
"130" 0.79 637 343 147 42.08
"131" 0.98 514.5 294 110.25 28.55
"132" 0.98 514.5 294 110.25 24.4
"133" 0.82 612.5 318.5 147 29.22
"134" 0.9 563.5 318.5 122.5 28.83
"135" 0.69 735 294 220.5 12.78
"136" 0.79 637 343 147 37.1
"137" 0.74 686 245 220.5 12.12
"138" 0.82 612.5 318.5 147 25.38
"139" 0.71 710.5 269.5 220.5 12.19
"140" 0.82 612.5 318.5 147 25.74
"141" 0.62 808.5 367.5 220.5 13.99
"142" 0.71 710.5 269.5 220.5 10.7
"143" 0.69 735 294 220.5 14.62
"144" 0.69 735 294 220.5 12.12
"145" 0.76 661.5 416.5 122.5 32.52
"146" 0.74 686 245 220.5 14.5
"147" 0.86 588 294 147 31.28
"148" 0.71 710.5 269.5 220.5 12.43
"149" 0.64 784 343 220.5 15.32
"150" 0.64 784 343 220.5 16.92
"151" 0.62 808.5 367.5 220.5 17.23
"152" 0.66 759.5 318.5 220.5 11.59
"153" 0.69 735 294 220.5 14.42
"154" 0.86 588 294 147 25.27
"155" 0.69 735 294 220.5 6.85
"156" 0.64 784 343 220.5 17.11
"157" 0.66 759.5 318.5 220.5 12.93
"158" 0.9 563.5 318.5 122.5 37.24
"159" 0.98 514.5 294 110.25 28.6
"160" 0.64 784 343 220.5 15.36
"161" 0.79 637 343 147 37.03
"162" 0.69 735 294 220.5 11.13
"163" 0.9 563.5 318.5 122.5 32.46
"164" 0.62 808.5 367.5 220.5 13.86
"165" 0.82 612.5 318.5 147 24.23
"166" 0.76 661.5 416.5 122.5 36.59
"167" 0.79 637 343 147 29.63
"168" 0.62 808.5 367.5 220.5 12.73
"169" 0.71 710.5 269.5 220.5 12.27
"170" 0.9 563.5 318.5 122.5 31.66
"171" 0.74 686 245 220.5 10.43
"172" 0.82 612.5 318.5 147 23.53
"173" 0.64 784 343 220.5 15.4
"174" 0.76 661.5 416.5 122.5 32.41
"175" 0.64 784 343 220.5 16.93
"176" 0.69 735 294 220.5 11.07
"177" 0.9 563.5 318.5 122.5 28.09
"178" 0.64 784 343 220.5 19.06
"179" 0.64 784 343 220.5 15.16
"180" 0.76 661.5 416.5 122.5 33.09
"181" 0.86 588 294 147 26.47
"182" 0.86 588 294 147 32.31
"183" 0.66 759.5 318.5 220.5 11.42
"184" 0.76 661.5 416.5 122.5 40.57
"185" 0.74 686 245 220.5 12.45
"186" 0.66 759.5 318.5 220.5 11.43
"187" 0.66 759.5 318.5 220.5 13
"188" 0.9 563.5 318.5 122.5 31.63
"189" 0.69 735 294 220.5 12.73
"190" 0.76 661.5 416.5 122.5 24.77
"191" 0.79 637 343 147 36.71
"192" 0.69 735 294 220.5 14.54
"193" 0.64 784 343 220.5 17.88
"194" 0.74 686 245 220.5 14.37
"195" 0.66 759.5 318.5 220.5 14.92
"196" 0.71 710.5 269.5 220.5 13.69
"197" 0.82 612.5 318.5 147 28.95
"198" 0.82 612.5 318.5 147 22.79
"199" 0.69 735 294 220.5 14.33
"200" 0.9 563.5 318.5 122.5 29.01
"201" 0.9 563.5 318.5 122.5 32.68
"202" 0.71 710.5 269.5 220.5 12.65
"203" 0.82 612.5 318.5 147 24.17
"204" 0.82 612.5 318.5 147 23.67
"205" 0.62 808.5 367.5 220.5 17.17
"206" 0.76 661.5 416.5 122.5 36.43
"207" 0.82 612.5 318.5 147 24.6
"208" 0.71 710.5 269.5 220.5 10.72
"209" 0.66 759.5 318.5 220.5 14.92
"210" 0.86 588 294 147 26.28
"211" 0.64 784 343 220.5 18.84
"212" 0.9 563.5 318.5 122.5 34.29
"213" 0.74 686 245 220.5 10.07
"214" 0.64 784 343 220.5 18.71
"215" 0.76 661.5 416.5 122.5 33.28
"216" 0.79 637 343 147 41.92
"217" 0.76 661.5 416.5 122.5 36.91
"218" 0.74 686 245 220.5 14.44
"219" 0.62 808.5 367.5 220.5 15.09
"220" 0.76 661.5 416.5 122.5 35.64
"221" 0.86 588 294 147 29.43
"222" 0.64 784 343 220.5 16.62
"223" 0.62 808.5 367.5 220.5 12.74
"224" 0.76 661.5 416.5 122.5 40.78
"225" 0.76 661.5 416.5 122.5 32.12
"226" 0.71 710.5 269.5 220.5 12.33
"227" 0.64 784 343 220.5 15.36
"228" 0.66 759.5 318.5 220.5 11.34
"229" 0.79 637 343 147 36.77
"230" 0.74 686 245 220.5 13.78
"231" 0.98 514.5 294 110.25 28.57
"232" 0.9 563.5 318.5 122.5 29.79
"233" 0.64 784 343 220.5 18.48
"234" 0.62 808.5 367.5 220.5 12.88
"235" 0.86 588 294 147 27.02
"236" 0.64 784 343 220.5 17.5
"237" 0.82 612.5 318.5 147 25.17
"238" 0.82 612.5 318.5 147 23.59
"239" 0.86 588 294 147 29.07
"240" 0.62 808.5 367.5 220.5 14.66
"241" 0.66 759.5 318.5 220.5 11.61
"242" 0.82 612.5 318.5 147 25.37
"243" 0.62 808.5 367.5 220.5 13
"244" 0.74 686 245 220.5 10.46
"245" 0.9 563.5 318.5 122.5 29.83
"246" 0.71 710.5 269.5 220.5 10.64
"247" 0.62 808.5 367.5 220.5 16.44
"248" 0.82 612.5 318.5 147 26
"249" 0.79 637 343 147 42.62
"250" 0.79 637 343 147 36.97
"251" 0.82 612.5 318.5 147 30
"252" 0.9 563.5 318.5 122.5 29.14
"253" 0.86 588 294 147 29.87
"254" 0.76 661.5 416.5 122.5 36.7
"255" 0.71 710.5 269.5 220.5 12.42
"256" 0.64 784 343 220.5 10.56
"257" 0.66 759.5 318.5 220.5 15.09
"258" 0.62 808.5 367.5 220.5 12.8
"259" 0.82 612.5 318.5 147 29.49
"260" 0.76 661.5 416.5 122.5 38.89
"261" 0.69 735 294 220.5 12.72
"262" 0.64 784 343 220.5 17.52
"263" 0.76 661.5 416.5 122.5 36.86
"264" 0.64 784 343 220.5 16.56
"265" 0.66 759.5 318.5 220.5 15.23
"266" 0.76 661.5 416.5 122.5 39.72
"267" 0.82 612.5 318.5 147 25.66
"268" 0.69 735 294 220.5 11.22
"269" 0.79 637 343 147 36.97
"270" 0.62 808.5 367.5 220.5 16.44
"271" 0.86 588 294 147 31.66
"272" 0.79 637 343 147 29.9
"273" 0.76 661.5 416.5 122.5 32.96
"274" 0.74 686 245 220.5 11.64
"275" 0.66 759.5 318.5 220.5 15.16
"276" 0.69 735 294 220.5 12.67
"277" 0.62 808.5 367.5 220.5 15.09
"278" 0.69 735 294 220.5 11.14
"279" 0.64 784 343 220.5 16.86
"280" 0.79 637 343 147 35.94
"281" 0.76 661.5 416.5 122.5 36.45
"282" 0.98 514.5 294 110.25 32.21
"283" 0.62 808.5 367.5 220.5 14.16
"284" 0.79 637 343 147 42.96
"285" 0.71 710.5 269.5 220.5 10.7
"286" 0.74 686 245 220.5 12.43
"287" 0.66 759.5 318.5 220.5 11.42
"288" 0.86 588 294 147 26.48
"289" 0.62 808.5 367.5 220.5 12.97
"290" 0.64 784 343 220.5 10.85
"291" 0.86 588 294 147 26.44
"292" 0.79 637 343 147 41.26
"293" 0.64 784 343 220.5 16.86
"294" 0.66 759.5 318.5 220.5 13.01
"295" 0.98 514.5 294 110.25 24.32
"296" 0.64 784 343 220.5 17.14
"297" 0.79 637 343 147 39.97
"298" 0.69 735 294 220.5 11.2
"299" 0.74 686 245 220.5 14.54
"300" 0.64 784 343 220.5 16.83
output1.txt
0.9 563.5 318.5 122.5 32.46 17.8394088094404
0.66 759.5 318.5 220.5 12.77 17.6122093702536
0.76 661.5 416.5 122.5 33.21 22.9337714686295
0.9 563.5 318.5 122.5 29.02 17.8394088094404
0.64 784 343 220.5 17.35 18.9000000000001
0.9 563.5 318.5 122.5 28.07 17.8394088094404
0.66 759.5 318.5 220.5 11.42 17.6122093702536
0.64 784 343 220.5 15.12 18.9000000000001
0.64 784 343 220.5 18.88 18.9000000000001
0.9 563.5 318.5 122.5 35.96 17.8394088094404
0.82 612.5 318.5 147 29.06 17.7636756630448
0.98 514.5 294 110.25 28.58 16.6084180394906
0.76 661.5 416.5 122.5 33.24 22.9337714686295
0.62 808.5 367.5 220.5 16.55 20.1877906297465
0.86 588 294 147 26.45 16.4948183198972
0.69 735 294 220.5 12.95 16.3338853838066
0.86 588 294 147 32.09 16.4948183198972
0.71 710.5 269.5 220.5 12.17 15.0460947540601
0.79 637 343 147 39.83 19.0419996494918
0.74 686 245 220.5 12.35 13.7677707676131
0.9 563.5 318.5 122.5 35.24 17.8394088094404
0.9 563.5 318.5 122.5 36.45 17.8394088094404
0.74 686 245 220.5 14.19 13.7677707676131
0.62 808.5 367.5 220.5 14.34 20.1877906297465
0.9 563.5 318.5 122.5 36.66 17.8394088094404
0.71 710.5 269.5 220.5 10.68 15.0460947540601
0.9 563.5 318.5 122.5 35.73 17.8394088094404
0.79 637 343 147 41.73 19.0419996494918
0.66 759.5 318.5 220.5 15.18 17.6122093702536
0.76 661.5 416.5 122.5 36.7 22.9337714686295
0.82 612.5 318.5 147 28.64 17.7636756630448
0.62 808.5 367.5 220.5 13.99 20.1877906297465
0.74 686 245 220.5 10.35 13.7677707676131
0.74 686 245 220.5 12.45 13.7677707676131
0.76 661.5 416.5 122.5 33.12 22.9337714686295
0.71 710.5 269.5 220.5 10.77 15.0460947540601
0.9 563.5 318.5 122.5 35.84 17.8394088094404
0.71 710.5 269.5 220.5 14.66 15.0460947540601
0.71 710.5 269.5 220.5 10.7 15.0460947540601
0.98 514.5 294 110.25 24.25 16.6084180394906
0.76 661.5 416.5 122.5 39.68 22.9337714686295
0.79 637 343 147 36.71 19.0419996494918
0.66 759.5 318.5 220.5 15.34 17.6122093702536
0.62 808.5 367.5 220.5 8.45 20.1877906297465
0.9 563.5 318.5 122.5 34.24 17.8394088094404
0.69 735 294 220.5 11.49 16.3338853838066
0.62 808.5 367.5 220.5 16.44 20.1877906297465
0.9 563.5 318.5 122.5 31.69 17.8394088094404
0.64 784 343 220.5 15.36 18.9000000000001
0.69 735 294 220.5 11.2 16.3338853838066
0.69 735 294 220.5 12.85 16.3338853838066
0.82 612.5 318.5 147 16.95 17.7636756630448
0.76 661.5 416.5 122.5 36.28 22.9337714686295
0.62 808.5 367.5 220.5 16.44 20.1877906297465
0.66 759.5 318.5 220.5 15.23 17.6122093702536
0.86 588 294 147 29.09 16.4948183198972
0.71 710.5 269.5 220.5 12.27 15.0460947540601
0.79 637 343 147 40.79 19.0419996494918
0.71 710.5 269.5 220.5 12.28 15.0460947540601
0.74 686 245 220.5 10.47 13.7677707676131
0.98 514.5 294 110.25 24.63 16.6084180394906
0.82 612.5 318.5 147 26.97 17.7636756630448
0.86 588 294 147 26.46 16.4948183198972
0.64 784 343 220.5 16.76 18.9000000000001
0.71 710.5 269.5 220.5 10.7 15.0460947540601
0.86 588 294 147 31.84 16.4948183198972
0.9 563.5 318.5 122.5 37.24 17.8394088094404
0.86 588 294 147 29.4 16.4948183198972
0.69 735 294 220.5 14.51 16.3338853838066
0.86 588 294 147 26.91 16.4948183198972
0.82 612.5 318.5 147 24.94 17.7636756630448
0.82 612.5 318.5 147 26.84 17.7636756630448
0.69 735 294 220.5 14.12 16.3338853838066
0.62 808.5 367.5 220.5 17.14 20.1877906297465
0.9 563.5 318.5 122.5 31.63 17.8394088094404
0.9 563.5 318.5 122.5 35.69 17.8394088094404
0.71 710.5 269.5 220.5 10.78 15.0460947540601
0.76 661.5 416.5 122.5 32.4 22.9337714686295
0.64 784 343 220.5 18.84 18.9000000000001
0.71 710.5 269.5 220.5 12.1 15.0460947540601
0.74 686 245 220.5 6.01 13.7677707676131
0.64 784 343 220.5 15.37 18.9000000000001
0.62 808.5 367.5 220.5 14.6 20.1877906297465
0.69 735 294 220.5 14.28 16.3338853838066
0.66 759.5 318.5 220.5 11.33 17.6122093702536
0.62 808.5 367.5 220.5 14.16 20.1877906297465
0.76 661.5 416.5 122.5 36.13 22.9337714686295
0.82 612.5 318.5 147 22.58 17.7636756630448
0.86 588 294 147 26.33 16.4948183198972
0.76 661.5 416.5 122.5 33.09 22.9337714686295
0.74 686 245 220.5 12.16 13.7677707676131
0.66 759.5 318.5 220.5 11.7 17.6122093702536
0.66 759.5 318.5 220.5 15.3 17.6122093702536
0.71 710.5 269.5 220.5 12.49 15.0460947540601
0.82 612.5 318.5 147 28.67 17.7636756630448
0.74 686 245 220.5 10.34 13.7677707676131
0.74 686 245 220.5 11.69 13.7677707676131
0.71 710.5 269.5 220.5 10.67 15.0460947540601
0.86 588 294 147 26.44 16.4948183198972
0.82 612.5 318.5 147 29.47 17.7636756630448
0.74 686 245 220.5 10.39 13.7677707676131
0.62 808.5 367.5 220.5 8.5 20.1877906297465
0.98 514.5 294 110.25 32.26 16.6084180394906
0.62 808.5 367.5 220.5 15.12 20.1877906297465
0.64 784 343 220.5 16.86 18.9000000000001
0.86 588 294 147 25.37 16.4948183198972
0.82 612.5 318.5 147 24.17 17.7636756630448
0.79 637 343 147 39.89 19.0419996494918
0.79 637 343 147 38.98 19.0419996494918
0.98 514.5 294 110.25 28.62 16.6084180394906
0.9 563.5 318.5 122.5 35.01 17.8394088094404
0.76 661.5 416.5 122.5 33.08 22.9337714686295
0.62 808.5 367.5 220.5 16.48 20.1877906297465
0.66 759.5 318.5 220.5 15.29 17.6122093702536
0.74 686 245 220.5 14.54 13.7677707676131
0.86 588 294 147 27.02 16.4948183198972
0.66 759.5 318.5 220.5 14.72 17.6122093702536
0.69 735 294 220.5 11.14 16.3338853838066
0.86 588 294 147 25.36 16.4948183198972
0.69 735 294 220.5 14.33 16.3338853838066
0.82 612.5 318.5 147 25.74 17.7636756630448
0.82 612.5 318.5 147 28.65 17.7636756630448
0.66 759.5 318.5 220.5 12.82 17.6122093702536
0.64 784 343 220.5 16.93 18.9000000000001
0.79 637 343 147 38.67 19.0419996494918
0.98 514.5 294 110.25 24.03 16.6084180394906
0.74 686 245 220.5 13.78 13.7677707676131
0.9 563.5 318.5 122.5 33.27 17.8394088094404
0.74 686 245 220.5 10.45 13.7677707676131
0.66 759.5 318.5 220.5 13.05 17.6122093702536
0.9 563.5 318.5 122.5 34.29 17.8394088094404
0.66 759.5 318.5 220.5 12.74 17.6122093702536
0.71 710.5 269.5 220.5 12.42 15.0460947540601
0.62 808.5 367.5 220.5 13.99 20.1877906297465
0.62 808.5 367.5 220.5 12.97 20.1877906297465
0.69 735 294 220.5 14.33 16.3338853838066
0.64 784 343 220.5 18.9 18.9000000000001
0.98 514.5 294 110.25 32.72 16.6084180394906
0.82 612.5 318.5 147 22.89 17.7636756630448
0.66 759.5 318.5 220.5 11.43 17.6122093702536
0.79 637 343 147 42.5 19.0419996494918
0.98 514.5 294 110.25 28.55 16.6084180394906
0.62 808.5 367.5 220.5 16.94 20.1877906297465
0.79 637 343 147 29.63 19.0419996494918
0.69 735 294 220.5 11.21 16.3338853838066
0.76 661.5 416.5 122.5 32.38 22.9337714686295
0.98 514.5 294 110.25 15.55 16.6084180394906
0.64 784 343 220.5 19 18.9000000000001
0.79 637 343 147 39.01 19.0419996494918
0.98 514.5 294 110.25 32.67 16.6084180394906
0.9 563.5 318.5 122.5 32.84 17.8394088094404
0.74 686 245 220.5 14.48 13.7677707676131
0.64 784 343 220.5 16.84 18.9000000000001
0.64 784 343 220.5 16.62 18.9000000000001
0.62 808.5 367.5 220.5 15.08 20.1877906297465
0.62 808.5 367.5 220.5 12.8 20.1877906297465
0.98 514.5 294 110.25 28.41 16.6084180394906
0.86 588 294 147 32.39 16.4948183198972
0.69 735 294 220.5 12.34 16.3338853838066
0.71 710.5 269.5 220.5 6.4 15.0460947540601
0.86 588 294 147 29.07 16.4948183198972
0.74 686 245 220.5 12.18 13.7677707676131
0.74 686 245 220.5 10.39 13.7677707676131
0.74 686 245 220.5 10.14 13.7677707676131
0.69 735 294 220.5 11.07 16.3338853838066
0.86 588 294 147 19.95 16.4948183198972
0.79 637 343 147 41.26 19.0419996494918
0.76 661.5 416.5 122.5 35.99 22.9337714686295
0.62 808.5 367.5 220.5 13.95 20.1877906297465
0.69 735 294 220.5 14.62 16.3338853838066
0.76 661.5 416.5 122.5 23.93 22.9337714686295
0.71 710.5 269.5 220.5 13.94 15.0460947540601
0.76 661.5 416.5 122.5 36.59 22.9337714686295
0.86 588 294 147 18.31 16.4948183198972
0.76 661.5 416.5 122.5 36.26 22.9337714686295
0.71 710.5 269.5 220.5 14.66 15.0460947540601
0.9 563.5 318.5 122.5 29.87 17.8394088094404
0.82 612.5 318.5 147 29.52 17.7636756630448
0.98 514.5 294 110.25 28.61 16.6084180394906
0.9 563.5 318.5 122.5 29.62 17.8394088094404
0.69 735 294 220.5 14.54 16.3338853838066
0.69 735 294 220.5 14.08 16.3338853838066
0.62 808.5 367.5 220.5 16.76 20.1877906297465
0.76 661.5 416.5 122.5 33.16 22.9337714686295
0.79 637 343 147 36.97 19.0419996494918
0.62 808.5 367.5 220.5 17.15 20.1877906297465
0.71 710.5 269.5 220.5 14.5 15.0460947540601
0.66 759.5 318.5 220.5 14.96 17.6122093702536
0.66 759.5 318.5 220.5 15.09 17.6122093702536
0.69 735 294 220.5 12.86 16.3338853838066
0.64 784 343 220.5 17.14 18.9000000000001
0.98 514.5 294 110.25 32.21 16.6084180394906
0.71 710.5 269.5 220.5 10.64 15.0460947540601
0.66 759.5 318.5 220.5 14.9 17.6122093702536
0.69 735 294 220.5 12.73 16.3338853838066
0.82 612.5 318.5 147 24.24 17.7636756630448
0.76 661.5 416.5 122.5 32.31 22.9337714686295
0.86 588 294 147 26.45 16.4948183198972
0.82 612.5 318.5 147 23.8 17.7636756630448
0.62 808.5 367.5 220.5 14.66 20.1877906297465
0.79 637 343 147 41.3 19.0419996494918
0.66 759.5 318.5 220.5 13.02 17.6122093702536
0.79 637 343 147 42.77 19.0419996494918
0.71 710.5 269.5 220.5 12.36 15.0460947540601
0.98 514.5 294 110.25 28.6 16.6084180394906
0.64 784 343 220.5 15.41 18.9000000000001
0.62 808.5 367.5 220.5 14.34 20.1877906297465
0.74 686 245 220.5 10.39 13.7677707676131
0.69 735 294 220.5 12.46 16.3338853838066
0.66 759.5 318.5 220.5 13.17 17.6122093702536
0.82 612.5 318.5 147 25.48 17.7636756630448
0.71 710.5 269.5 220.5 14.58 15.0460947540601
0.98 514.5 294 110.25 24.4 16.6084180394906
0.66 759.5 318.5 220.5 11.6 17.6122093702536
0.86 588 294 147 28.4 16.4948183198972
0.98 514.5 294 110.25 28.18 16.6084180394906
0.66 759.5 318.5 220.5 7.1 17.6122093702536
0.62 808.5 367.5 220.5 16.47 20.1877906297465
0.64 784 343 220.5 15.19 18.9000000000001
0.66 759.5 318.5 220.5 12.84 17.6122093702536
0.66 759.5 318.5 220.5 12.86 17.6122093702536
0.64 784 343 220.5 16.66 18.9000000000001
0.82 612.5 318.5 147 23.87 17.7636756630448
0.76 661.5 416.5 122.5 32.31 22.9337714686295
0.62 808.5 367.5 220.5 12.93 20.1877906297465
0.71 710.5 269.5 220.5 6.4 15.0460947540601
0.69 735 294 220.5 6.77 16.3338853838066
0.76 661.5 416.5 122.5 23.93 22.9337714686295
0.82 612.5 318.5 147 17.05 17.7636756630448
0.76 661.5 416.5 122.5 35.69 22.9337714686295
0.76 661.5 416.5 122.5 40.57 22.9337714686295
0.98 514.5 294 110.25 28.57 16.6084180394906
0.9 563.5 318.5 122.5 32.46 17.8394088094404
0.76 661.5 416.5 122.5 32.21 22.9337714686295
0.79 637 343 147 35.65 19.0419996494918
0.79 637 343 147 38.35 19.0419996494918
0.69 735 294 220.5 14.75 16.3338853838066
0.64 784 343 220.5 10.54 18.9000000000001
0.62 808.5 367.5 220.5 16.64 20.1877906297465
0.64 784 343 220.5 15.18 18.9000000000001
0.64 784 343 220.5 16.69 18.9000000000001
0.62 808.5 367.5 220.5 12.74 20.1877906297465
0.86 588 294 147 32.13 16.4948183198972
0.66 759.5 318.5 220.5 13 17.6122093702536
0.69 735 294 220.5 11.18 16.3338853838066
0.69 735 294 220.5 11.46 16.3338853838066
0.98 514.5 294 110.25 28.67 16.6084180394906
0.86 588 294 147 29.87 16.4948183198972
0.79 637 343 147 35.89 19.0419996494918
0.76 661.5 416.5 122.5 24.77 22.9337714686295
0.74 686 245 220.5 12.12 13.7677707676131
0.79 637 343 147 37.26 19.0419996494918
0.86 588 294 147 26.47 16.4948183198972
0.86 588 294 147 32.74 16.4948183198972
0.71 710.5 269.5 220.5 10.68 15.0460947540601
0.64 784 343 220.5 16.99 18.9000000000001
0.69 735 294 220.5 11.16 16.3338853838066
0.86 588 294 147 31.28 16.4948183198972
0.69 735 294 220.5 14.7 16.3338853838066
0.82 612.5 318.5 147 23.59 17.7636756630448
0.98 514.5 294 110.25 28.15 16.6084180394906
0.74 686 245 220.5 12.02 13.7677707676131
0.79 637 343 147 36.77 19.0419996494918
0.62 808.5 367.5 220.5 8.49 20.1877906297465
0.98 514.5 294 110.25 15.55 16.6084180394906
0.69 735 294 220.5 14.71 16.3338853838066
0.9 563.5 318.5 122.5 34.95 17.8394088094404
0.82 612.5 318.5 147 24.03 17.7636756630448
0.79 637 343 147 39.86 19.0419996494918
0.64 784 343 220.5 15.16 18.9000000000001
0.69 735 294 220.5 12.12 16.3338853838066
0.98 514.5 294 110.25 24.33 16.6084180394906
0.76 661.5 416.5 122.5 24.77 22.9337714686295
0.64 784 343 220.5 15.42 18.9000000000001
0.66 759.5 318.5 220.5 11.53 17.6122093702536
0.86 588 294 147 31.66 16.4948183198972
0.66 759.5 318.5 220.5 14.92 17.6122093702536
0.9 563.5 318.5 122.5 33.28 17.8394088094404
0.98 514.5 294 110.25 32.85 16.6084180394906
0.79 637 343 147 36.9 19.0419996494918
0.71 710.5 269.5 220.5 10.75 15.0460947540601
0.79 637 343 147 39.81 19.0419996494918
0.64 784 343 220.5 16.86 18.9000000000001
0.71 710.5 269.5 220.5 10.72 15.0460947540601
0.98 514.5 294 110.25 24.38 16.6084180394906
0.79 637 343 147 35.78 19.0419996494918
0.64 784 343 220.5 15.4 18.9000000000001
0.74 686 245 220.5 10.42 13.7677707676131
0.62 808.5 367.5 220.5 16.54 20.1877906297465
0.64 784 343 220.5 15.19 18.9000000000001
0.79 637 343 147 37.12 19.0419996494918
0.62 808.5 367.5 220.5 13 20.1877906297465
0.66 759.5 318.5 220.5 11.44 17.6122093702536
0.86 588 294 147 31.81 16.4948183198972
0.76 661.5 416.5 122.5 39.72 22.9337714686295
0.71 710.5 269.5 220.5 14.47 15.0460947540601
0.86 588 294 147 26.33 16.4948183198972
0.86 588 294 147 32.31 16.4948183198972
0.62 808.5 367.5 220.5 13 20.1877906297465
0.98 514.5 294 110.25 24.58 16.6084180394906
stats1.txt
RMSE 9.98390937200607
Av. abs e
or 8.03094014487675
Pearson Co
elation 0.425854989523737
Spearman Co
elation 0.53469848407802
Orness 0.5
i Shapley i
1 0.946664329945087
2 0
3 0.0533356700549129
4 0
inary number fm.weights
1 0.946664329945087
2 0
3 0.946664329945087
4 0.0533356700549129
5 1
6 0.0533356700549129
7 1
8 0
9 0.946664329945087
10 0
11 0.946664329945087
12 0.0533356700549129
13 1
14 0.0533356700549129
15 1
AggWaFit718.R
#################################################
############# #############
############# AggWAfit #############
############# #############
#################################################
# The following functions can be used for calculating and fitting aggregation functions to data
#
# For fitting, the data table needs to be in the form x_11 x_12 ... x_1n y_1, i.e. with the first
# n columns representing the variables and the last column representing the output.
###############################################################
# NECESSARY LIBRARIES (will require installation of packages) #
###############################################################
li
ary(lpSolve)
#li
ary(scatterplot3d)
########################
# FUNCTION DEFINITIONS #
########################
#------ some generators ------#
AM <- function(x) {x}
invAM <- function(x) {x}
GM <- function(x) {-log(x)}
invGM <- function(x) {exp(-x)}
GMa <- function(x) {x^0.00001}
invGMa <- function(x) {x^(1/0.00001)}
QM <- function(x) {x^2}
invQM <- function(x) {sqrt(x)}
PM05 <- function(x) {x^0.5}
invPM05 <-function(x) {x^(1/0.5)}
HM <- function(x) {x^(-1)}
invHM <- function(x) {x^(-1)}
#------ Weighted Power Means ------#
PM <- function(x,w =a
ay(1/length(x),length(x)),p) { # 1. pre-defining the function inputs
if(p == 0) { # 2. condition for `if' statement
prod(x^w)              # 3. what to do when (p==0) is TRUE
}
else {(sum(w*(x^p)))^(1/p)} # 4. what to do when (p==0) is FALSE
}
#------ Weighted Quasi-Arithmetic Means ------#
QAM <- function(x,w=a
ay(1/length(x),length(x)),g=AM,g.inv=invAM) { # 1. pre-defining the inputs
# (with equal weights and g ~arithmetic mean default)
...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here