Great Deal! Get Instant $10 FREE in Account on First Order + 10% Cashback on Every Order Order Now

kindly check the attached files

1 answer below »
JEE 504 – Principles of Naval Architecture – Assignment
__________________________________________________________________________________
1

JEE 504 PRINCIPLES OF NAVAL ARCHITECTURE
Final Assignment – Part1
Date range: 22th May to 12th June 2023
This assignment forms 25% of the subject’s total marks.
Student’s report is to be submitted on-line (PDF files)
__________________________________________________________________________________
Hydrostatic Analysis (25%)
The offset table of 88.2m bulk ca
ier is provided, and the main particulars of the ship are as follows:
LWL (St XXXXXXXXXXm
BWL (Max XXXXXXXXXXm
Displacement 4206 t
KB 2.055m
KG 5.88 m
LCG 45.2 m
T 3.91 m
1. Using the offset table and associated data, determine the best estimates for the following hull
form data at the ship’s design draft (3.91m):
BMT, KMT, BML, KML, LCF, TPC and MCTC
2. Draw a GZ curve using the cross-curve given in the 2nd page of the excel offset table, where
formulas and GZ table is provided. Investigate if the ship stability complies with the “Criteria for
the righting lever curve properties”, sub-section 2.2 of International Code on Intact Stability, 2008
(IS Code). The IS Code is accessible through IMO Codes from Regs4ships website:
(http:
dmr.regs4ships.com/australia/)
(continue next page)
__________________________________________________________________________________
http:
dmr.regs4ships.com/australia
JEE 504 – Principles of Naval Architecture – Assignment
__________________________________________________________________________________
2

Interpretations Required of Students:
Provide a concise assessment of the vessel’s probable sensitivities to GZ curve if additional loads are
either loaded to or discharged from the vessel during port operation, based on any of the values you
have determined above.
Guidance for Students:
An approach recommended to this part of the project is as follows:
1. Set up a spreadsheet to determine the values required similar to Assignment-1
2. Refer to page two of the excel sheet and read out the GZ values for the given displacement.
3. Co
ect the extracted GZ value for the given KG since the default value for the GZ table is 6m and
complete the GZ table using two formulas given.
4. Draw the GZ curve and check if it complies with the Righting-Lever criteria given in IS-Code. You
may need to measure the area under the curve using Simpson’s rules.
________________________________________

Syllabus 14 template
1
Dr Hossein Enshaei
JEE504 Principles of Naval Architecture: Final assignment-part2
Motion response in an i
egular sea
Analysis Due Date: June 12th, 2023. This assignment forms 25% of the subject's total marks.
Synopsis of the task and its context
Students individually develop a software package to calculate motion response spectrum using experimental data collected for 1:20 scale
model ship (Bluefin) at AMC towing tank. The model is operating in head sea at 1 m wave height at 8 knots (0.05 m @ 0.92m/s model scale).
This is using the constant wave height, varying wave freq data and then by adding the final three runs at varying wave height with constant
frequency. There is an Excel file attached to this assignment that provides the ship's particular and the experimental data. For model scaling
efer to the references.
1- Plot the required spectrum and RAO using variable input parameters collected at different experimental runs
2- Calculate the motion response parameters such as spectral moments, mean response period (frequency), significant response amplitude and
maximum amplitude in each of the given motions.
3- A review should be conducted in a form of a report to demonstrate the knowledge and understanding by discussing the linearity of the
seakeeping behaviour of Bluefin.
Match between objectives/learning outcomes and criteria for the task
Learning outcomes from the original unit Task specific criteria
On completion of this assignment you should be able to: To complete this task, you should demonstrate:
1. Apply the concepts of random motion response theories. Apply the
statistic and probabilistic methods to analyse the significance of the motion
spectrum that defines the motion behaviour of a ship.
1. Demonstrate theoretical and practical knowledge of wave mechanics
and wave spectrum
2. Abilities to develop a software package to calculate different wave
spectrum
3. Utilise the experimental data in your calculations
4. Analyse results to justify your calculations
5. Communication in writing in the form of a report
2
Third year unit Hydrodynamics of Offshore Structures: JEE306 Wave Spectrum Calculation Assessment Task 1 Weighting 15 %
Criteria High Distinction (HD) Distinction (DN) Credit (CR) Pass (PP) Fail (NN)
Demonstrate
theoretical and
practical
knowledge of
wave
mechanism, and
wave energy
spectrum
20%
 demonstrate and apply
comprehensive knowledge of
wave mechanism and wave
energy spectrum calculation
 demonstrate and apply
oad
knowledge of wave mechanism
and wave energy spectrum
calculation
 demonstrate and apply
knowledge of wave mechanism
and wave energy spectrum
calculation
 demonstrate and apply basic
knowledge wave mechanism and
wave energy spectrum
calculation
 demonstrate partially-developed
knowledge of wave mechanism
and wave energy spectrum
calculation
 support all your work with
extensive, relevant and cu
ent
literature, link all of your wave
energy spectrum calculations to
elevant theory and industry
practices
 support your work with relevant
and cu
ent literature, link most
of your wave energy spectrum
calculations to relevant theory
and industry practices
 support most of your work with
elevant literature, link some of
your wave energy spectrum
calculations to relevant theory
and industry practices
 support at least half of your work
with literature, link some of you
wave energy spectrum
calculations to theory and
industry practices
 partially link to some theory and
coastal industry practices
Abilities to
develop a
software
package to
co
ectly
calculate wave
spectrum
40%
 successfully develop a user-
friendly software package that
calculates wave energy
spectrum co
ectly
 successfully a software package
that calculates wave energy
spectrum co
ectly
 develop a software package that
calculates wave energy
spectrum co
ectly
 develop a software package that
calculates wave energy
spectrum partially co
ectly
 develops a software package
that calculates wave energy
spectrum inco
ectly
 make meaningful assumptions
and co
ectly calculate all of the
expected parameters and
variables, thoroughly justifying
their use and outcomes
 make relevant assumptions and
co
ectly calculate the expected
parameters and variables,
justifying their use and outcomes
 make assumptions and calculate
most expected parameters and
variables, justifying their use and
outcomes
 make at least half the required
assumptions and calculate some
of the expected parameters and
variables, partially justifying thei
use and outcomes
 make insufficient or wrong
assumptions and partially
calculate some of the expected
parameters, occasionally
justifying their use and
outcomes
Analyse results
to justify your
calculations
20%
 thoroughly and methodically
analyse data
esults by:
 methodically analyse
data
esults by:
 analyse data
esults by:  analyse data
esults by:  analyse some data
esults
 clearly justifying your
judgments by refe
ing to
elevant and cu
ent
literature, theory and
calculations
 justifying your judgments by
efe
ing to relevant and
cu
ent literature, theory and
calculations
 justifying most of your
judgments by refe
ing to
partly relevant literature,
theory and calculations
 justifying at least half your
judgments by refe
ing to
some literature, theory and
calculations
Communication
in writing in the
form of a
technical report
20%
 communicate concisely and
coherently in a structured and
eadable report that adheres to
the given format
 present data in a neat, clearly
and accurately format which is
easily interpreted
 communicate concisely and
coherently in a structured and
eadable report that adheres to
the given format
 present data in a neat, clearly
format that is easily interpreted
 communicate coherently in a
structured and readable report
that adheres to the given format
 present data in a clearly format
that can be interpreted
 communicate in a structured and
eadable report that largely
adheres to the given format
 present data in a sorted and
labelled format that can be
interpreted
 present information
 present data

Offset table
        WL0    WL1    WL2    WL3    WL4    WL5    WL6    WL7    WL8    WL9    WL10    WL11    WL12    WL13    WL14    WL15    WL16    WL17    WL18    WL19    WL20    WL21    WL22    WL23    WL24    WL25
    Stations    0.000    0.003    0.006    0.009    0.012    0.015    0.018    0.021    0.024    0.027    0.031    0.034    0.037    0.040    0.043    0.046    0.049    0.052    0.055    0.058    0.061    0.067    0.073    0.079    0.085    0.092
    0 (AP)    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.021    0.042    0.053    0.059    0.067    0.070    0.072    0.073    0.073        LWL (St.0-15)    84 m
    0.5    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.003    0.023    0.045    0.058    0.066    0.071    0.075    0.078    0.081    0.083    0.084    0.084    0.084        BWL (Max)    15.27 m
    1.0    0.001    0.005    0.006    0.008    0.009    0.009    0.010    0.011    0.012    0.013    0.017    0.026    0.042    0.056    0.066    0.073    0.078    0.081    0.084    0.085    0.087    0.088    0.089    0.089    0.089    0.089        Displacement    4206 t
    1.5    0.004    0.011    0.015    0.017    0.020    0.022    0.025    0.029    0.034    0.042    0.053    0.063    0.071    0.077    0.081    0.084    0.086    0.088    0.089    0.090    0.090    0.091    0.091    0.091    0.091    0.091        KB    2.055 m
    2.0    0.007    0.019    0.024    0.029    0.034    0.040    0.045    0.052    0.059    0.067    0.073    0.079    0.082    0.086    0.088    0.089    0.090    0.091    0.091    0.092    0.092    0.092    0.092    0.092    0.092    0.092        KG    5.88 m
    3.0    0.015    0.035    0.047    0.058    0.066    0.073    0.077    0.081    0.084    0.086    0.088    0.089    0.090    0.091    0.091    0.091    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092        LCG    45.2 m
    4.0    0.023    0.058    0.074    0.080    0.084    0.087    0.088    0.089    0.090    0.091    0.091    0.091    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092        T    3.91 m
    5.0    0.035    0.082    0.087    0.089    0.090    0.091    0.091    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092
    6.0    0.080    0.087    0.090    0.091    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092
    7.0    0.080    0.087    0.090    0.091    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092
    8.0    0.080    0.087    0.090    0.091    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092
    9.0    0.080    0.087    0.090    0.091    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092
    10.0    0.080    0.087    0.090    0.091    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092
    11.0    0.080    0.087    0.090    0.091    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092
    12.0    0.080    0.087    0.090    0.091    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092
    13.0    0.080    0.087    0.090    0.091    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092    0.092
    13.5    0.051    0.072    0.078    0.081    0.082    0.084    0.084    0.085    0.086    0.086    0.086    0.086    0.087    0.087    0.087    0.087    0.088    0.088    0.088    0.088    0.088    0.089    0.089    0.089    0.090    0.090
    14.0    0.032    0.050    0.056    0.061    0.065    0.067    0.069    0.070    0.072    0.073    0.073    0.074    0.075    0.075    0.076    0.077    0.077    0.077    0.078    0.078    0.079    0.079    0.080    0.081    0.081    0.082
    14.5    0.011    0.028    0.034    0.038    0.042    0.045    0.047    0.048    0.050    0.051    0.052    0.053    0.054    0.055    0.056    0.057    0.058    0.058    0.059    0.060    0.060    0.062    0.063    0.064    0.065    0.066
    15 (FP)    0.000    0.000    0.005    0.009    0.012    0.014    0.016    0.018    0.019    0.020    0.021    0.021    0.022    0.023    0.023    0.024    0.025    0.025    0.026    0.026    0.027    0.028    0.029    0.031    0.033    0.036
    Note:
        The above set of data is an offset table of a model ship.
        In order to convert it to a ship scale, you need to calculate the scale factor by dividing the half of the ship's beam (15.27/2) by the half of the model's beam (0.092).
        This scale factor (83) should be multiplied to the above offset table to get the ship's offset table.
        For the sake of simplification, the forward part of the ship is excluded from the offset table where there are more complications.
Cross Curve
                                                                            Roll Angle (Deg.)    Tabulated GZ [m]    Co
ections    Co
ected GZ [m]
Righting Lever Diagram
Righting Lever    
Heel Angle [Deg]
GZ [m]
Cross Curves
15 Deg.    161.874     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX    2338.6     XXXXXXXXXX    3016.49     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX    4438.42     XXXXXXXXXX     XXXXXXXXXX    5562.21     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX    3.762    3.375     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX    2.343     XXXXXXXXXX    2.093     XXXXXXXXXX     XXXXXXXXXX    1.889    1.847     XXXXXXXXXX     XXXXXXXXXX    30 Deg.    161.874     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX    2338.6     XXXXXXXXXX    3016.49     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX    4438.42     XXXXXXXXXX     XXXXXXXXXX    5562.21     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX    4.274    4.17     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX    3.766     XXXXXXXXXX    3.504     XXXXXXXXXX    45 Deg.    161.874     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX    2338.6     XXXXXXXXXX    3016.49     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX    4438.42     XXXXXXXXXX     XXXXXXXXXX    5562.21     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX    5.359     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX    4.835     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX    60 Deg.    161.874     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX    2338.6     XXXXXXXXXX    3016.49     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX    4438.42     XXXXXXXXXX     XXXXXXXXXX    5562.21    4.55     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX    4.899    4.782     XXXXXXXXXX     XXXXXXXXXX    75 Deg.    161.874     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX    2338.6     XXXXXXXXXX    3016.49     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX    4438.42     XXXXXXXXXX     XXXXXXXXXX    5562.21    3.645     XXXXXXXXXX    4.843     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX    4.891    4.835     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX    4.577     XXXXXXXXXX     XXXXXXXXXX    90 Deg.    161.874     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX    2338.6     XXXXXXXXXX    3016.49     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX    4438.42     XXXXXXXXXX     XXXXXXXXXX    5562.21     XXXXXXXXXX     XXXXXXXXXX    4.117     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX    4.056     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX     XXXXXXXXXX    4.03    4.024     XXXXXXXXXX     XXXXXXXXXX    Displacement in tonnes
GZ righting lever in m

Hydrolysis Analysis

Part a
1.
a. BMT = Transverse metacentric radius measured from center of buoyancy
BMT = Transverse Moment of inertia/Volume immersed in the water
Length of the ship (L) = 84 m
Breadth(B) = 15.27 m
Answered 1 days After Jun 11, 2023

Solution

Atul answered on Jun 11 2023
35 Votes
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here